Sains Malaysiana 54(4)(2025): 1077-1088

http://doi.org/10.17576/jsm-2025-5404-09

 

Synergistic Effect of Fenugreek-Zinc Oxide Nanoparticles for Managing Diabetes Mellitus in Experimental Animals

(Kesan Nanozarah Zink Oksida Fenugreek untuk Mengawal Diabetes Melitus dalam Haiwan Uji Kaji)

 

HALA S. ABDEL FATAH1,*, MOHAMED A. EL-BADRY2, ABDULLAH ALSUBAIE3 & YASER A. EL-BADRY4

 

1Biochemistry Laboratory, Biochemistry and Nutrition Department, Faculty of Women`s for Arts, Science and Education, Ain Shams University, 11767 Cairo, Egypt

2Biochemistry Department, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes (GOTHI), Giza, Egypt

3Physics Department, AlKhurma University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

4Chemistry Department, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif 21944, Saudi Arabia

 

Diserahkan: 22 Jun 2024/ Diterima: 16 Disember 2024

 

Abstract

Fenugreek extract and zinc oxide nanoparticles were prepared using ultrasonication and chemical methods, respectively. The physico-chemical characterization of fenugreek extract and zinc oxide nanoparticles was performed using FT-IR and UV spectroscopy. The phase formation, morphology, and size of particles were investigated by scanning electron microscope and X-ray diffraction. The antidiabetic activities of both Fenugreek extract and zinc oxide nanoparticles were performed using the inhibition assays of α-glucosidase and α-amylase. A mixture of fenugreek and ZnO nanoparticles was prepared under a chemical food strategy and then its efficacy has been examined in preclinical studies on experimental animals. As projected, the fenugreek extract and zinc oxide nanoparticles exerted remarkable antidiabetic activities. It was concluded that they possess a concentration-dependent reduction in the % of inhibition for the α-glucosidase and α-amylase activities. Oral administration of fenugreek extract, zinc oxide nanoparticles, and a mixture of both for 45 days in streptozotocin-prompted diabetic rats exerted a hypoglycemic impact. An expressive reduction in biochemical parameters has been realized with a non-toxic nature of the fenugreek extract, zinc oxide nanoparticles, and the mixture. Conclusively, the superior scope of the nano-mixture for excellent hyperglycemic improvement in contrast to fenugreek extract or zinc oxide nanoparticles supplementation was illuminated via its synergistic effect on diabetic persistence.  

Keywords: Diabetes; fenugreek extract; fenugreek-zinc oxide mixture; synergistic effect; zinc oxide nanoparticles

 

Abstrak

Ekstrak fenugreek dan nanozarah zink oksida telah disediakan masing-masing menggunakan kaedah ultrasonik dan kimia. Pencirian fiziko-kimia ekstrak fenugreek dan nanozarah zink oksida dilakukan menggunakan spektroskopi FT-IR dan UV. Pembentukan fasa, morfologi, dan saiz zarah telah dikaji dengan mengimbas mikroskop elektron dan pembelauan sinar-X. Aktiviti antidiabetik kedua-dua ekstrak Fenugreek dan nanozarah zink oksida telah dilakukan menggunakan ujian perencatan α-glucosidase dan α-amilase. Campuran nanozarah fenugreek dan ZnO telah disediakan di bawah strategi makanan kimia dan kemudian keberkesanannya telah diperiksa dalam kajian praklinikal ke atas haiwan uji kaji. Seperti yang diunjurkan, ekstrak fenugreek dan nanozarah zink oksida memberikan aktiviti antidiabetik yang luar biasa. Disimpulkan bahawa mereka mempunyai pengurangan yang bergantung kepada kepekatan dalam % perencatan untuk aktiviti α-glukosidase dan α-amilase. Pemberian lisan ekstrak fenugreek, nanozarah zink oksida dan campuran kedua-duanya selama 45 hari dalam tikus diabetes yang didorong oleh streptozotosin telah menimbulkan kesan hipoglisemik. Pengurangan ekspresif dalam parameter biokimia telah direalisasikan dengan sifat bukan toksik ekstrak fenugreek, nanozarah zink oksida serta campuran. Secara kesimpulannya, skop unggul campuran nano untuk peningkatan hiperglisemik yang sangat baik berbanding dengan ekstrak fenugreek atau suplemen nanozarah zink oksida telah diterangi melalui kesan sinergistiknya terhadap kegigihan diabetes.

Kata kunci: Campuran fenugreek-zink oksida; diabetes; ekstrak fenugreek; kesan sinergistik; nano zarah zink oksida

 

RUJUKAN

Ajaya, K., Shetty, P. & Salimath, V. 2009. Reno-protective effects of fenugreek (Trigonella foenum greacum) during experimental diabetes. E. J. Clin. Nutr. Metab. 4(3): 137-142.

Akintelu, S.A. & Folorunso, A.S. 2020. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoSci. 10: 848-863.

Alkaladi, A., Abdelazim, A.M. & Afifi, M. 2014. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 15: 2015-2023.

Arvind, K., Pradeepa, R., Deepa, R. & Mohan, V. 2002. Diabetes & coronary artery disease. Ind. J. Med. Res. 116: 163-176.

Ashwini, D. & Mahalingam, G. 2020. Green synthesized metal nanoparticles, characterization and its antidiabetic activities- A review. Res. J. Pharm. Tech. 13(1): 468-474.

Benayad, Z., Martinez-Villaluenga, C., Frias, J., Gomez-Cordoves, C. & Es-Safi, N. 2014. Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind. Crops Prod. 62: 412-420.

Bordolo, R. & Dutta, N. 2014. A review on herbs used in the treatment of diabetes mellitus. J. Pharm. Chem. Biol. Sci. 2(2): 86-92.

Brod, J. & Sirota, J.H. 1948. The renal clearance of endogenous creatinine in man. J. Clin. Invest. 27: 645-654.

Clark, P.M.S. & Hales, C.N. 1991. Assay of insulin. In Textbook of Diabetes, edited by Pickup, P.C. & Williams, G. Blackwell Scientific Publications. 1: 335-347.

Debele, T.A. & Park, Y. 2022. Application of nanoparticles: Diagnosis, therapeutics, and delivery of insulin/anti-diabetic drugs to enhance the therapeutic efficacy of diabetes mellitus. Life (Basel, Switzerland) 12(12): 2078.

Dhull, S.B., Bamal, P., Chandak A., Nain, K.B. & Malik, A. 2024. Fenugreek (Trigonella foenum-graecum): An herb with impressive nutritional and antidiabetic properties. In Antidiabetic Medicinal Plants, edited by Naeem, M. & Aftab, T. Massachusetts: Academic Press. pp. 305-325.

Drent, M.L., Tollefsen, A.T., van Heusden, F.H., Hoenderdos, E.B., Jonker, J.J. & van der Veen, E.A. 2002. Dose-dependent efficacy of miglitol, an alpha-glucosidase inhibitor, in type 2 diabetic patients on diet alone: results of a 24-week double-blind placebo-controlled study. Diabetes Nutr. Metab. 15(3): 152-159.

El-Nagdy, S.A., Elfakharany, Y.M., Morsy, M.M., Ahmad, M.M., Abd El-Fatah, S.S. & Khayal, E.E. 2024. The role of fenugreek seed extract in alleviating pancreatic toxic effects and altering glucose homeostasis induced by acetamiprid via modulation of oxidative stress, apoptosis, and autophagy. Tissue Cell 86: 102265.

Gobert, C.P. & Duncan, A.M. 2009. Consumption, precipitations and knowledge of soy among adults with type 2 diabetes. J. Am. Coll. Nutr. 28(2): 203-318.

Hamza, N., Berke, B., Cheze, C., Le Garrec, R., Umar, A., Agli, A., Lassalle, R., Jové, J., Gin, H. & Moore, N. 2012. Preventive and curative effect of Trigonella foenum-graecum L. seeds in C57BL/6J models of type 2 diabetes induced by high-fat diet. J. Ethnopharmacol. 142(2): 516-522.

Hanna, L., Sándor, M. & Wink, M. 2022. Effect of ethanol solvents on total phenolic content and antioxidant properties of seed extracts of fenugreek (Trigonella foenum-graecum L.) varieties and determination of phenolic composition by HPLC-ESI-MS. Diversity 14(1): 7.

Hbika, A., Daoudi, N.E., Bouyanzer, A., Bouhrim, M., Mohti, H., Loukili, E.H., Mechchate, H., Al-Salahi, R., Nasr, F.A., Bnouham, M. & Zaid, A. 2022. Artemisia absinthium L. aqueous and ethyl acetate extracts: Antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics 14(3): 481.

Jin, L., Xue, H.Y., Jin, L.Y. & Li, S.Y. 2008. Antioxidant and pancreas-protoctive effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582: 162-167.

King, J. 1965. Transaminases: Alanine and aspartate transaminases. In Practical Clinical Enzymology, edited by Van D. London: Van Nostrand. pp. 363-395.

Kodumuri, P.K., Thomas, C., Jetti, R. & Pandey, A.K. 2019. Fenugreek seed extract ameliorates cognitive deficits in streptozotocin-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 30(4): 20180140.

Kumar, P., Bhandari, U. & Jamadagni, S. 2014. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. Biomed. Res. Int. 2014: 606021.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.

Luo, W., Deng, J., He, J., Yin, L., You, R., Zhang, L., Shen, J., Han, Z., Xie, F., He, J. & Guan, Y. 2023. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J. Cell. Mol. Med. 27: 1959-1974.

Manita, D., Ogino, S., Marivoet, S. & Ogura, M. 2023. Detectability of and interference by major and minor hemoglobin variants using a new-generation ion-exchange HPLC system with two switchable analysis modes. Pract. Lab. Med. 38: e00346.

Marzouk, M., Soliman, A.M. & Omar, T.Y. 2013. Hypoglycemic and antioxidative effects of fenugreek and termis seeds powder in streptozotocin-diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 17(4): 559-565.

Natelson, S., Scott, M.L. & Beffa, C. 1951. A rapid method for the estimation of urea in biologic fluids. Am. J. Clin. Pathol. 21: 275-281.

Neelakantan, N., Narayanan, M., de Souza, R.J. & van Dam, R.M. 2014. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials. Nutr. J. 13: 7.

Perla, V. & Jayanty, S.S. 2013. Biguanide related compounds in traditional antidiabetic functional food. Food Chem. 138: 1574-1580.

Ravi Kiran, T., Subramanyam, M.V. & Asha Devi, S. 2004. Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: Relationship to swim intensity and duration. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 137(2): 187-196.

Rehana, D., Mahendiran, D., Kumar, R.S. & Rahiman, A.K. 2017. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng. 40(6): 943-957.

Rochette, L., Zeller, M., Cottin, Y. & Vergely, C. 2014. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta 1840(9): 2709-2729.

Samadder, A. 2014. Nanotechnological approaches in diabetes treatment: A new horizon. World J. Transl. Med. 3(2): 84-95.

Saraste, A., Knuuti, J. & Bax, J. 2023. Screening for coronary artery disease in patients with diabetes. Curr. Cardiol. Rep. 25: 1865-1871.

Sauvaire, Y., Petit, P. & Broca, C. 1998. 4-Hydroxyisoleucine: A novel amino acid potentiator of insulin secretion. Diabetes 47: 206-210.

Sayed, A.A.R., Khalifa, M. & Abd El-Latif, F.F. 2012. Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats. J. Physiol. Biochem. 68: 263-269.

Scott, F.W., Trick, K.D., Lee L.P., Hynie, I., Heick, H.M. & Nera, E.A. 1984. Serum enzymes in the BB rat before and after onset of the overt diabetic syndrome. Clin. Biochem. 17(4): 270-275.

Sharma, B., Balomajumder, C. & Roy, P. 2008. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chemi. Toxicol. 46: 2376-2383.

Srivastava, R.A.K. 2018. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular diseaseMol. Cell. Biochem. 440: 167-187.

Steel, R.G. & Torri, J.H. 1980. Principle and Procedures of Statistical Biometrical Approach. 2nd ed. New York: McGrew Hill Book Company.

Suwalsky, M., Novoa, V., Villena, F., Sotomayor, C.P., Aguilar, L.F., Ronowska, A. & Szutowicz, A. 2009. Structural effects of Zn2+ on cell membranes and molecular models. J. Inorg. Biochem. 103(5): 797-804.

Tak, Y., Kaur, M., Chitranashi, A., Samota, M.K., Verma, P., Bali, M. & Kumawat, C. 2024. Fenugreek derived diosgenin as an emerging source of diabetic therapy. Front. Nutr. 11: 1280100.

Tietz, N.W. 1976. Fundamentals of Clinical Chemistry, 1st ed. Philadephia: W.B. Saunders Co.

Umrani, R.D. & Paknikar, K.M. 2014. Zinc oxide nanoparticles show anti-diabetic activity in streptozotocin-induced type 1 and 2 diabetic rats. Nanomedicine (Lond Engl) 9(1): 89-104.

Uribe-Lpez, M., Hidalgo-Lpez, M.D., Lpez‐Gnzalez, R., Frías-Márquez, D.M., Nñez-Nogueira, G., Hernández-Castillo, D. & Álvarez-Lemus, M.A. 2021. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J. Photochem. Photobiol. A Chem. 404: 112866.

Vardatsikos, G., Pandey, N. & Srivastava, A. 2013. Insulino-mimetic and anti-diabetic effects of zinc. J. Inorg. Biochem. 120: 8-17.

Vijayaraghavan, K. 2010. Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis. 9: 144.

Vinotha, V., Iswarya, A., Thaya, R., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Al-Anbr, M.N. & Vaseeharan, B. 2019. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. J. Photochem. Photobiol. B. 197: 111541.

 

*Pengarang untuk surat-menyurat; email: hala_elmohamdy@yahoo.com

 

 

 

 

 

 

 

 

 

 

           

sebelumnya