Sains Malaysiana 54(4)(2025): 1077-1088
http://doi.org/10.17576/jsm-2025-5404-09
Synergistic Effect of Fenugreek-Zinc Oxide Nanoparticles
for Managing Diabetes Mellitus in Experimental Animals
(Kesan Nanozarah Zink Oksida Fenugreek untuk Mengawal Diabetes Melitus
dalam Haiwan Uji Kaji)
HALA S. ABDEL FATAH1,*, MOHAMED A. EL-BADRY2, ABDULLAH
ALSUBAIE3 & YASER A. EL-BADRY4
1Biochemistry Laboratory, Biochemistry and Nutrition Department, Faculty
of Women`s for Arts, Science and Education, Ain Shams University, 11767 Cairo,
Egypt
2Biochemistry Department, Research Institute of Medical Entomology,
General Organization for Teaching Hospitals and Institutes (GOTHI), Giza, Egypt
3Physics Department, AlKhurma
University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4Chemistry Department, Faculty of Science, Taif University, Khurma,
P.O. Box 11099, Taif 21944, Saudi Arabia
Diserahkan: 22 Jun 2024/ Diterima: 16 Disember 2024
Abstract
Fenugreek extract and zinc
oxide nanoparticles were prepared using ultrasonication and chemical methods,
respectively. The physico-chemical characterization of fenugreek extract and
zinc oxide nanoparticles was performed using FT-IR and UV spectroscopy. The
phase formation, morphology, and size of particles were investigated by
scanning electron microscope and X-ray diffraction. The antidiabetic activities
of both Fenugreek extract and zinc oxide nanoparticles were performed using the
inhibition assays of α-glucosidase and α-amylase. A mixture of
fenugreek and ZnO nanoparticles was prepared under a chemical food strategy and
then its efficacy has been examined in preclinical studies on experimental
animals. As projected, the fenugreek extract and zinc oxide nanoparticles
exerted remarkable antidiabetic activities. It was concluded that they possess
a concentration-dependent reduction in the % of inhibition for the
α-glucosidase and α-amylase activities. Oral administration of
fenugreek extract, zinc oxide nanoparticles, and a mixture of both for 45 days
in streptozotocin-prompted diabetic rats exerted a hypoglycemic impact. An
expressive reduction in biochemical parameters has been realized with a
non-toxic nature of the fenugreek extract, zinc oxide nanoparticles, and the
mixture. Conclusively, the superior scope of the nano-mixture for excellent
hyperglycemic improvement in contrast to fenugreek extract or zinc oxide
nanoparticles supplementation was illuminated via its synergistic effect on
diabetic persistence.
Keywords: Diabetes; fenugreek
extract; fenugreek-zinc oxide mixture; synergistic effect; zinc oxide
nanoparticles
Abstrak
Ekstrak fenugreek
dan nanozarah zink oksida telah disediakan masing-masing menggunakan kaedah
ultrasonik dan kimia. Pencirian fiziko-kimia ekstrak fenugreek dan nanozarah
zink oksida dilakukan menggunakan spektroskopi FT-IR dan UV. Pembentukan fasa,
morfologi, dan saiz zarah telah dikaji dengan mengimbas mikroskop elektron dan pembelauan
sinar-X. Aktiviti antidiabetik kedua-dua ekstrak Fenugreek dan nanozarah zink
oksida telah dilakukan menggunakan ujian perencatan α-glucosidase dan
α-amilase. Campuran nanozarah fenugreek dan ZnO telah disediakan di bawah
strategi makanan kimia dan kemudian keberkesanannya telah diperiksa dalam
kajian praklinikal ke atas haiwan uji kaji. Seperti yang diunjurkan, ekstrak
fenugreek dan nanozarah zink oksida memberikan aktiviti antidiabetik yang luar
biasa. Disimpulkan bahawa mereka mempunyai pengurangan yang bergantung kepada
kepekatan dalam % perencatan untuk aktiviti α-glukosidase dan
α-amilase. Pemberian lisan ekstrak fenugreek, nanozarah zink oksida dan
campuran kedua-duanya selama 45 hari dalam tikus diabetes yang didorong oleh
streptozotosin telah menimbulkan kesan hipoglisemik. Pengurangan ekspresif
dalam parameter biokimia telah direalisasikan dengan sifat bukan toksik ekstrak
fenugreek, nanozarah zink oksida serta campuran. Secara kesimpulannya, skop
unggul campuran nano untuk peningkatan hiperglisemik yang sangat baik
berbanding dengan ekstrak fenugreek atau suplemen nanozarah zink oksida telah
diterangi melalui kesan sinergistiknya terhadap kegigihan diabetes.
Kata kunci:
Campuran fenugreek-zink oksida; diabetes; ekstrak fenugreek; kesan sinergistik;
nano zarah zink oksida
RUJUKAN
Ajaya, K., Shetty,
P. & Salimath, V. 2009. Reno-protective
effects of fenugreek (Trigonella foenum greacum) during
experimental diabetes. E. J. Clin.
Nutr. Metab. 4(3): 137-142.
Akintelu, S.A.
& Folorunso, A.S. 2020. A review on green synthesis of zinc oxide
nanoparticles using plant extracts and its biomedical applications. BioNanoSci. 10:
848-863.
Alkaladi, A.,
Abdelazim, A.M. & Afifi, M. 2014. Antidiabetic activity of zinc oxide and silver
nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 15: 2015-2023.
Arvind, K.,
Pradeepa, R., Deepa, R. & Mohan, V. 2002. Diabetes & coronary artery disease. Ind. J. Med. Res. 116: 163-176.
Ashwini, D. &
Mahalingam, G. 2020. Green synthesized metal nanoparticles, characterization
and its antidiabetic activities- A review. Res. J. Pharm. Tech. 13(1):
468-474.
Benayad, Z., Martinez-Villaluenga, C., Frias, J., Gomez-Cordoves, C.
& Es-Safi, N. 2014. Phenolic composition, antioxidant and anti-inflammatory
activities of extracts from Moroccan Opuntia ficus-indica flowers
obtained by different extraction methods. Ind. Crops Prod. 62: 412-420.
Bordolo, R. &
Dutta, N. 2014. A review on herbs used in the treatment of diabetes mellitus. J.
Pharm. Chem. Biol. Sci. 2(2): 86-92.
Brod, J. & Sirota, J.H. 1948. The renal clearance of endogenous
creatinine in man. J. Clin. Invest. 27: 645-654.
Clark, P.M.S. & Hales, C.N. 1991. Assay of insulin. In Textbook
of Diabetes, edited by Pickup, P.C. & Williams, G. Blackwell Scientific
Publications. 1: 335-347.
Debele, T.A. & Park, Y. 2022. Application of nanoparticles:
Diagnosis, therapeutics, and delivery of insulin/anti-diabetic drugs to enhance
the therapeutic efficacy of diabetes mellitus. Life (Basel,
Switzerland) 12(12): 2078.
Dhull, S.B., Bamal, P., Chandak A., Nain, K.B. & Malik,
A. 2024. Fenugreek (Trigonella foenum-graecum): An herb with impressive
nutritional and antidiabetic properties. In Antidiabetic Medicinal Plants, edited
by Naeem, M. & Aftab, T. Massachusetts: Academic Press. pp. 305-325.
Drent, M.L.,
Tollefsen, A.T., van Heusden, F.H., Hoenderdos, E.B., Jonker, J.J. & van
der Veen, E.A. 2002. Dose-dependent efficacy of miglitol, an alpha-glucosidase
inhibitor, in type 2 diabetic patients on diet alone: results of a 24-week
double-blind placebo-controlled study. Diabetes Nutr. Metab. 15(3):
152-159.
El-Nagdy, S.A., Elfakharany, Y.M., Morsy, M.M.,
Ahmad, M.M., Abd El-Fatah, S.S. & Khayal, E.E. 2024. The role of
fenugreek seed extract in alleviating pancreatic toxic effects and altering
glucose homeostasis induced by acetamiprid via modulation of oxidative stress,
apoptosis, and autophagy. Tissue Cell 86: 102265.
Gobert, C.P. &
Duncan, A.M. 2009. Consumption, precipitations and knowledge of soy among
adults with type 2 diabetes. J. Am. Coll. Nutr. 28(2): 203-318.
Hamza,
N., Berke, B., Cheze, C., Le Garrec, R., Umar, A., Agli, A., Lassalle, R., Jové, J., Gin, H. & Moore, N. 2012. Preventive and curative
effect of Trigonella foenum-graecum L. seeds in C57BL/6J models of type
2 diabetes induced by high-fat diet. J. Ethnopharmacol. 142(2):
516-522.
Hanna, L.,
Sándor, M. & Wink, M. 2022. Effect of ethanol solvents on total
phenolic content and antioxidant properties of seed extracts of fenugreek (Trigonella
foenum-graecum L.) varieties and determination of phenolic composition
by HPLC-ESI-MS. Diversity 14(1): 7.
Hbika, A., Daoudi,
N.E., Bouyanzer, A., Bouhrim, M., Mohti, H., Loukili, E.H., Mechchate, H.,
Al-Salahi, R., Nasr, F.A., Bnouham, M. & Zaid, A. 2022. Artemisia
absinthium L. aqueous and ethyl acetate extracts: Antioxidant effect
and potential activity in vitro and in vivo against pancreatic
α-amylase and intestinal α-glucosidase. Pharmaceutics 14(3):
481.
Jin, L., Xue, H.Y.,
Jin, L.Y. & Li, S.Y. 2008. Antioxidant and pancreas-protoctive effect of
aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582: 162-167.
King, J. 1965. Transaminases: Alanine and aspartate transaminases. In Practical
Clinical Enzymology, edited by Van D. London: Van Nostrand. pp. 363-395.
Kodumuri,
P.K., Thomas, C., Jetti, R. & Pandey, A.K. 2019. Fenugreek seed extract
ameliorates cognitive deficits in streptozotocin-induced diabetic rats. J.
Basic Clin. Physiol. Pharmacol. 30(4): 20180140.
Kumar, P., Bhandari, U. & Jamadagni, S. 2014.
Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in
high fat diet-induced obese rats. Biomed. Res. Int. 2014: 606021.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951.
Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:
265-275.
Luo, W., Deng, J., He, J., Yin, L., You, R.,
Zhang, L., Shen, J., Han, Z., Xie, F., He, J. & Guan, Y. 2023. Integration of molecular
docking, molecular dynamics and network pharmacology to explore the
multi-target pharmacology of fenugreek against diabetes. J. Cell. Mol. Med. 27: 1959-1974.
Manita, D., Ogino, S., Marivoet, S. & Ogura, M. 2023. Detectability
of and interference by major and minor hemoglobin variants using a
new-generation ion-exchange HPLC system with two switchable analysis
modes. Pract. Lab. Med. 38: e00346.
Marzouk, M.,
Soliman, A.M. & Omar, T.Y. 2013. Hypoglycemic and antioxidative effects of
fenugreek and termis seeds powder in streptozotocin-diabetic rats. Eur.
Rev. Med. Pharmacol. Sci. 17(4): 559-565.
Natelson, S., Scott, M.L. & Beffa, C. 1951. A rapid method for the
estimation of urea in biologic fluids. Am. J. Clin. Pathol. 21: 275-281.
Neelakantan, N., Narayanan, M., de
Souza, R.J. & van Dam, R.M. 2014. Effect of fenugreek (Trigonella
foenum-graecum L.) intake on glycemia: A meta-analysis of clinical
trials. Nutr. J. 13: 7.
Perla, V. & Jayanty, S.S. 2013. Biguanide related
compounds in traditional antidiabetic functional food. Food Chem. 138:
1574-1580.
Ravi Kiran, T.,
Subramanyam, M.V. & Asha Devi, S. 2004. Swim exercise training and
adaptations in the antioxidant defense system of myocardium of old rats: Relationship
to swim intensity and duration. Comp. Biochem. Physiol. B. Biochem. Mol.
Biol. 137(2): 187-196.
Rehana, D.,
Mahendiran, D., Kumar, R.S. & Rahiman, A.K. 2017. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized
using different plant extracts. Bioprocess Biosyst. Eng. 40(6): 943-957.
Rochette, L.,
Zeller, M., Cottin, Y. & Vergely, C. 2014. Diabetes, oxidative stress and
therapeutic strategies. Biochim. Biophys. Acta 1840(9): 2709-2729.
Samadder, A. 2014.
Nanotechnological approaches in diabetes treatment: A new horizon. World J.
Transl. Med. 3(2): 84-95.
Saraste, A., Knuuti, J. & Bax, J. 2023. Screening for coronary
artery disease in patients with diabetes. Curr. Cardiol. Rep. 25:
1865-1871.
Sauvaire, Y.,
Petit, P. & Broca, C. 1998. 4-Hydroxyisoleucine: A novel amino acid
potentiator of insulin secretion. Diabetes 47: 206-210.
Sayed, A.A.R.,
Khalifa, M. & Abd El-Latif, F.F. 2012. Fenugreek attenuation of diabetic
nephropathy in alloxan-diabetic rats. J. Physiol. Biochem. 68: 263-269.
Scott, F.W., Trick,
K.D., Lee L.P., Hynie, I., Heick, H.M. & Nera, E.A. 1984. Serum enzymes in the BB rat before and after onset of the overt
diabetic syndrome. Clin. Biochem. 17(4): 270-275.
Sharma, B.,
Balomajumder, C. & Roy, P. 2008. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on
streptozotocin induced diabetic rats. Food Chemi. Toxicol. 46: 2376-2383.
Srivastava,
R.A.K. 2018. Dysfunctional HDL in diabetes mellitus
and its role in the pathogenesis of cardiovascular disease. Mol. Cell. Biochem. 440:
167-187.
Steel, R.G. &
Torri, J.H. 1980. Principle and Procedures of Statistical Biometrical
Approach. 2nd ed. New York: McGrew Hill Book Company.
Suwalsky, M.,
Novoa, V., Villena, F., Sotomayor, C.P., Aguilar, L.F., Ronowska, A. &
Szutowicz, A. 2009. Structural effects of Zn2+ on cell membranes and
molecular models. J. Inorg. Biochem. 103(5): 797-804.
Tak, Y., Kaur, M., Chitranashi,
A., Samota, M.K., Verma, P., Bali, M. & Kumawat, C. 2024. Fenugreek
derived diosgenin as an emerging source of diabetic therapy. Front. Nutr. 11: 1280100.
Tietz, N.W. 1976. Fundamentals of Clinical Chemistry, 1st ed. Philadephia:
W.B. Saunders Co.
Umrani, R.D. & Paknikar, K.M. 2014. Zinc oxide
nanoparticles show anti-diabetic activity in streptozotocin-induced type 1 and
2 diabetic rats. Nanomedicine (Lond Engl) 9(1): 89-104.
Uribe-Lpez,
M., Hidalgo-Lpez, M.D., Lpez‐Gnzalez, R., Frías-Márquez,
D.M., Nñez-Nogueira, G., Hernández-Castillo, D. &
Álvarez-Lemus, M.A. 2021. Photocatalytic activity of ZnO nanoparticles
and the role of the synthesis method on their physical and chemical
properties. J. Photochem. Photobiol. A Chem. 404: 112866.
Vardatsikos, G., Pandey, N. & Srivastava, A. 2013.
Insulino-mimetic and anti-diabetic effects of zinc. J. Inorg. Biochem. 120:
8-17.
Vijayaraghavan,
K. 2010. Treatment of dyslipidemia in patients with type 2 diabetes. Lipids
Health Dis. 9: 144.
Vinotha, V., Iswarya, A., Thaya, R., Govindarajan, M.,
Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Al-Anbr, M.N. & Vaseeharan,
B. 2019. Synthesis of ZnO nanoparticles using insulin-rich leaf extract:
Anti-diabetic, antibiofilm and anti-oxidant properties. J. Photochem.
Photobiol. B. 197: 111541.
*Pengarang untuk surat-menyurat;
email: hala_elmohamdy@yahoo.com